Thursday, December 9, 2010

Kromatografi Cair Kinerja Tinggi (KCKT)

PENDAHULUAN

1.1. Sejarah

Kromatografi adalah suatu istilah umum yang digunakan untuk bermacam-macam teknik pemisahan yang didasarkan atas partisi sampel diantara suatu rasa gerak yang bisa berupa gas ataupun cair dan rasa diam yang juga bisa berupa cairan ataupun suatu padatan. Penemu Kromatografi adalah Tswett yang pada tahun 1903, mencoba memisahkan pigmen-pigmen dari daun dengan menggunakan suatu kolom yang berisi kapur (CaSO4). lstilah kromatografi diciptakan oleh Tswett untuk melukiskan daerah-daerah yang berwarna yang bergerak kebawah kolom. Pada waktu yang hampir bersamaan, D.T. Day juga menggunakan kromatografi untuk memisahkan fraksi-fraksi petroleum, namun Tswett lah yang pertama diakui sebagai penemu dan yang menjelaskan tentang proses kromatografi.

Penyelidikan tentang kromatografi kendor untuk beberapa tahun sampai digunakan suatu teknik dalam bentuk kromatografi padatan cair (LSC). Kemudian pada akhir tahun 1930 an dan permulaan tahun 1940 an, kromatografi mulai berkembang. Dasar kromatografi lapisan tipis (TLC) diletakkan pada tahun 1938 oleh Izmailov dan Schreiber, dan kemudian diperhalus oleh Stahl pada tahun 1958. Hasil karya yang baik sekali dari Martin dan Synge pada tahun 1941 (untuk ini mereka memenangkan Nobel) tidak hanya mengubah dengan cepat kroinatografi cair tetapi seperangkat umum langkah untuk pengembangan kromatografi gas dan kromatografi kertas. Pada tahun 1952 Martin dan James mempublikasikan makalah pertama mengenai kromatografi gas. Diantara tahun 1952 dan akhir tahun 1960 an kromatografi gas dikembangkan menjadi suatu teknik analisis yang canggih.

Kromatografi cair, dalam praktek ditampilkan dalam kolom gelas berdiameter besar, pada dasamya dibawah kondisi atmosfer. Waktu analisis lama dan segala prosedur biasanya sangat membosankan. Pada akhir tahun 1960 an, semakin banyak usaha dilakukan untuk pengembangan kromatografi cair sebagai suatu teknik mengimbangi kromatografi gas. High Performance Liquid Chromatography (HPLC) atau Kromatografi Cair Penampilan Tinggi atau High Preformance = Tekanan atau Kinerja Tinggi, High Speed = Kecepatan Tinggi dan Modern = moderen) telah berhasil dikembangkan dari usaha ini. Kemajuan dalam keduanya instrumentasi dan pengepakan kolom terjadi dengan cepatnya sehingga sulit untuk mempertahankan suatu bentuk hasil keahlian membuat instrumentasi dan pengepakan kolom dalam keadaan tertentu. Tentu saja, saat ini dengan teknik yang sudah matang dan dengan cepat KCKT mencapai suatu keadaan yang sederajat dengan kromatografi gas.

1.2. Kelebihan KCKT

Kromatografi Cair Kinerja Tinggi (KCKT) atau High Pressure Liquid Chromatography (HPLC) merupakan salah satu metode kimia dan fisikokimia. KCKT termasuk metode analisis terbaru yaitu suatu teknik kromatografi dengan fasa gerak cairan dan fasa diam cairan atau padat. Banyak kelebihan metode ini jika dibandingkan dengan metode lainnya (Done dkk, 1974; Snyder dan Kirkland, 1979; Hamilton dan Sewell, 1982; Johnson dan Stevenson, 1978). Kelebihan itu antara lain:

· mampu memisahkan molekul-molekul dari suatu campuran

· mudah melaksanakannya

· kecepatan analisis dan kepekaan yang tinggi

· dapat dihindari terjadinya dekomposisi / kerusakan bahan yang dianalisis

· Resolusi yang baik

· dapat digunakan bermacam-macam detektor

· Kolom dapat digunakan kembali

· mudah melakukan "sample recovery"

II. JENIS-JENIS KROMATOGRAFI

2.1. Kromatografi padatan cair (LSC)

Teknik ini tergantung pada teradsorpsinya zat padat pada adsorben yang polar seperti silika gel atau alumina. Kromatografi lapisan tipis (TLC) adalah salah satu bentuk dari LSC. Dalam KCKT kolom dipadati atau dipak dengan partikel-partikel micro or macro particulate or pellicular (berkulit tipis 37 -44 m).Sebagian besar dari KCKT sekarang ini dibuat untuk mencapai partikel-partikel microparticulate lebih kecil dari 20m . Teknik ini biasanya digunakan untuk zat padat yang mudah larut dalam pelarut organik dan tidak terionisasi. Teknik ini terutama sangat kuat untuk pemisahan isomer-isomer.

2.2. Kromatografi partisi

Teknik ini tergantung pada partisi zat padat diantara dua pelarut yang tidak dapat bercampur salah satu diantaranya bertindak sebagai rasa diam dan yang lainnya sebagai fasa gerak. Pada keadaan awal dari kromatografi cair (LSC), rasa diamnya dibuat dengan cara yang sama seperti pendukung pada kromatografi gas (GC). Fasa diam (polar atau nonpolar) dilapisi pada suatu pendukung inert dan dipak kedalam sebuah kolom. Kemudian rasa gerak dilewatkan melalui kolom. Bentuk kromatografi partisi ini disebut kromatografi cair cair (LLC).

Untuk memenuhi kebutuhan akan kolom-kolom yang dapat lebih tahan lama, telah dikembangkan pengepakan fase diam yang berikatan secara kimia dengan pendukung inert. Bentuk kromatografi partisi ini disebut kromatografi fase terikat (BPC = Bonded Phase Chromatography). BPC dengan cepat menjadi salah satu bentuk yang paling populer dari KCKT. Kromatografi partisi (LLC dan BPC), disebut "fase normal" bila fase diam lebih polar dari fase gerak dan "fase terbalik" bila fase gerak lebih polar dari pada fase diam.

2.3. Kromatografi penukar ion (IEC)

Teknik ini tergantung pada penukaran (adsorpsi) ion-ion di antara fase gerak dan tempat-tempat berion dari pengepak. Kebanyakan mesin-mesin berasal dari kopolimer divinilbenzen stiren dimana gugus-gugus fungsinya telah ditambah. Asam sulfonat dan amin kuarterner merupakan jenis resin pilihan paling baik untuk digunakan Keduanya, fase terikat dan resin telah digunakan. Teknik ini digunakan secara luas dalam life sciences dan dikenal untuk pemisahan asam-asam amino. Teknik ini dapat dipakai untuk keduanya kation dan anion.

2.4. Kromatografi eksklusi

Teknik ini unik karena dalam pemisahan didasarkan pada ukuran molekul dari zat padat. Pengepak adalah suatu gel dengan permukaan berlubang-lubang sangat kecil (porous) yang inert. Molekul-rnolekul kecil dapat masuk dalarn jaringan dan ditahan dalam fase gerak yang menggenang (stagnat mobile phase). Molekul- molekul yang lebih besar, tidak dapat masuk kedalam jaringan dan lewat melalui kolom tanpa ditahan.

Kromatografi eksklusi rnernpunyai banyak nama, yang paling umum disebut permeasi gel (GPC) dan filtrasi gel. Apapun namanya, mekanismenya tetap sama. Dalam bidang biologi, Sephadex, suatu Cross-linked dextran gel, telah digunakan secara luas, hanya pengepak keras dan semi keras (polistiren, silika, glass) yang digunakan dalam KCKT. Dextran gel lunak tidak dapat menahan kinerja diatas 1 atau 2 atmosfer. Tenik ini dikembangkan untuk analisis polimer-polimer dan bahan-bahan biologi, terutama digunakan untuk rnolekul-molekul kecil.

2.5. Kromatografi pasangan ion (IPC)

Kromatogtafi pasangan ion sebagai penyesuaian terhadap KCKT termasuk baru, pemakaian pertama sekali pada pertengahan tahun 1970. Diterimanya IPC sebagai metode baru KCKT merupakan hasil kerja Schill dan kawan-kawan dan dari beberapa keuntungan yang unik. Kadang-kadang IPC disebut juga kromatografi ekstraksi, kromatografi dengan suatu cairan penukar ion dan paired ion chromatography (PIC). Setiap teknik-teknik ini mempunyai dasar yang sama.

Popularitas IPC muncul terutama sekali dari keterbatasan IEC dan dari sukanya menangani sampel-sampel tertentu dengan metode-metode LC lainnya (seperti senyawa yang sangat polar, senyawa yang terionisasi secara kompleks dan senyawa basa kuat).

IPC dapat dilaksanakan dalam dua tipe yaitu fase normal dan fase balik. Fase diam dari rase balik IPC dapat terdiri dari suatu pengepak silika yang disilanisasi (misalnya C8 atau C18 Bonded Phase) atau dari suatu pengepak yang diperoleh secara mekanik, fase organik yang tidak dapat bercampur dengan air seperti 1 pentanol. Fase diam yang dipakai adalah Cs atau CIS BPC Packing. Fase gerak terdiri dari suatu larutan bufer (ditambah suatu kosolven organik seperti metanol atau asetonitril untuk pemisahan fase terikat) dan suatu penambahan ion tanding,yang muatannya berlawanan dengan molekul sampel.

Kekuataan solven baik dalam fase normal ataupun fase balik IPC dapat juga divariasi dengan merubah polaritas fase gerak. Untuk sistem fase balik IPC tanpa penambahan fase diam organik, campuran air dengan salah satunya metanol atau asetonitril biasanya digunakan sebagai fase gerak. Bila persentase air dikurangi, maka pelarut menjadi lebih kuat dan harga k' sampel berkurang.

Selain dari pada menaikkan konsentrasi ion tanding, menaikkan kekuatan ionik didalam fase air biasanya mengurangi pembentukan pasangan-pasangan ion, sebagai suatu hasil kompetisi dari ion-ion sekunder dalam membentuk pasangan- pasangan ion dengan ion tanding. Maka suatu kenaikan/pertambahan kekuatan ion akan menurunkan harga k' pada IPC fase balik dan akan meninggikan harga k' pada rase normal IPC. Satu studi membuktikan bahwa 2 sampai 3 kali lipat perubahan k' untuk setiap menggandakan kekuatan ion. Ion-ion sekunder yang muatannya sama dengan muatan ion sampel (misal : kationik atau anionik) mempunyai efek yang paling besar pada harga k' sampel. Dalam suatu studi meliputi pemisahan anion-anion sampel dengan IPC, efek dari ion-ion sekunder terhadap k' bertambah dalam urutan NO34-2

III. KOMPONEN-KOMPONEN KCKT

3. 1. Pompa (pump)

Fase gerak dalam KCKT adalah suatu cairan yang bergerak melalui kolom. Ada dua tipe pompa yang digunakan, yaitu kinerja konstan (constant pressure) dan pemindahan konstan (constant displacement). Pemindahan konstan dapat dibagi menjadi dua, yaitu: pompa reciprocating dan pompa syringe. Pompa reciprocating menghasilkan suatu aliran yang berdenyut teratur (pulsating),oleh karena itu membutuhkan peredam pulsa atau peredam elektronik untuk, menghasilkan garis dasar (base line) detektor yang stabil, bila detektor sensitif terhadapan aliran. Keuntungan utamanya ialah ukuran reservoir tidak terbatas. Pompa syringe memberikan aliran yang tidak berdenyut, tetapi reservoirnya terbatas.

3. 2. Injektor (injector)

Sampel yang akan dimasukkan ke bagian ujung kolom, harus dengan disturbansi yang minimum dari material kolom. Ada dua model umum :

a) Stopped Flow

b) Solvent Flowing Ada tiga tipe dasar injektor yang dapat digunakan :

a. Stop-Flow: Aliran dihentikan, injeksi dilakukan pada kinerja atmosfir, system

tertutup, dan aliran dilanjutkan lagi. Teknik ini bisa digunakan karena difusi di dalam cairan kecil clan resolusi tidak dipengaruhi

b. Septum: Septum yang digunakan pada KCKT sama dengan yang digunakan

pada Kromtografi Gas. Injektor ini dapat digunakan pada kinerja sampai 60 - 70 atmosfir. Tetapi septum ini tidak tahan dengan semua pelarut-pelarut Kromatografi Cair.Partikel kecil dari septum yang terkoyak (akibat jarum injektor) dapat menyebabkan penyumbatan.

c. Loop Valve: Tipe injektor ini umumnya digunakan untuk menginjeksi volume lebih besar dari 10 m dan dilakukan dengan cara automatis (dengan menggunakan adaptor yang sesuai, volume yang lebih kecil dapat diinjeksifan secara manual). Pada posisi LOAD, sampel diisi kedalam loop pada kinerja atmosfir, bila VALVE difungsikan, maka sampel akan masuK ke dalam kolom.

3. 3. Kolom (Column)

Kolom adalah jantung kromatografi. Berhasil atau gagalnya suatu analisis tergantung pada pemilihan kolom dan kondisi percobaan yang sesuai. Kolom dapat dibagi menjadi dua kelompok :

a. Kolom analitik : Diameter dalam 2 -6 mm. Panjang kolom tergantung pada jenis material pengisi kolom. Untuk kemasan pellicular, panjang yang digunakan adalah 50 -100 cm. Untuk kemasan poros mikropartikulat, 10 -30 cm. Dewasa ini ada yang 5 cm.

b. Kolom preparatif: umumnya memiliki diameter 6 mm atau lebih besar dan panjang kolom 25 -100 cm.

Kolom umumnya dibuat dari stainlesteel dan biasanya dioperasikan pada temperatur kamar, tetapi bisa juga digunakan temperatur lebih tinggi, terutama untuk kromatografi penukar ion dan kromatografi eksklusi. Pengepakan kolom tergantung pada model KCKT yang digunakan (Liquid Solid Chromatography, LSC; Liquid Liquid Chromatography, LLC; Ion Exchange Chromatography, IEC, Exclution Chromatography, EC)

3. 4. Detektor (Detector)

Suatu detektor dibutuhkan untuk mendeteksi adanya komponen sampel di dalam kolom (analisis kualitatif) dan menghitung kadamya (analisis kuantitatif).Detektor yang baik memiliki sensitifitas yang tinggi, gangguan (noise) yang rendah, kisar respons linier yang luas, dan memberi respons untuk semua tipe senyawa. Suatu kepekaan yang rendah terhadap aliran dan fluktuasi temperatur sangat diinginkan, tetapi tidak selalu dapat diperoleh.

Detektor KCKT yang umum digunakan adalah detektor UV 254 nm. Variabel panjang gelombang dapat digunakan untuk mendeteksi banyak senyawa dengan range yang lebih luas. Detektor indeks refraksi juga digunakan secara luas, terutama pada kromatografi eksklusi, tetapi umumnya kurang sensitif jika dibandingkan dengan detektor UV. Detektor-detektor lainnya antara lain:

Detektor Fluorometer -Detektor Spektrofotometer Massa

Detektor lonisasi nyala -Detektor Refraksi lndeks

Detektor Elektrokimia -Detektor Reaksi Kimia

3. 5. Elusi Gradien

Elusi Gradien didefinisikan sebagai penambahan kekuatan fasa gerak selama analisis kromatografi berlangsung. Efek dari Elusi Gradien adalah mempersingkat waktu retensi dari senyawa-senyawa yang tertahan kuat pada kolom. Dasar-dasar elusi gradien dijelaskan oleh Snyder.

Elusi Gradien menawarkan beberapa keuntungan :

a. Total waktu analisis dapat direduksi

b. Resolusi persatuan waktu setiap senyawa dalam campuran bertambah

c. Ketajaman Peak bertambah (menghilangkan tailing)

d. Efek sensitivitas bertambah karena sedikit variasi pada peak

Gradien dapat dihentikan sejenak atau dilanjutkan. Optimasi Gradien dapat dipilih dengan cara trial and error. Tabel 3. 1. berikut ini menunjukkan kompatibilitas dari bermacam-macarn mode kromatografi cair dengan analisis gradien. Dalam praktek, gradien dapat diformasi sebelum dan sesudah pompa.

Tabel 3. 1 : Mode Kompatibilitas dengan Gradien

Mode

SolvenGradien

Kromatografi Cair padat (LSC)

Ya

Kromatografi ekslusi

Tidak

Kromatografi Penukar Ion (IEC)

Ya

Kromatografi Cair Cair (LLC)

Tidak

Kromatografi Fasa Terikat (BPC)

Ya

3. 6. Pengolahan Data (Data Handling)

Hasil dari pemisahan kromatografi biasanya ditampilkan dalam bentuk kromatogram pada rekorde. Waktu retensi dan volume retensi dapat diketahui /dihitung. Lni bisa digunakan untuk mengidentifikasi secara kualitatif suatu komponen, bila kondisi kerja dapat dikontrol. Lebar puncak dan tinggi puncak sebanding atau proporsional dengan konsentrasi dan dapat digunakan untuk memperoleh hasil secara kuantitatif.

3. 7. Fasa gerak

Di dalam kromatografi cair komposisi dari solven atau rasa gerak adalah salah satu dari variabel yang mempengaruhi pemisahan. Terdapat variasi yang sangat luas pada solven yang digunakan untuk KCKT, tetapi ada beberapa sifat umum yang sangat disukai, yaitu rasa gerak harus :

1. Murni, tidak terdapat kontaminan

2. Tdak bereaksi dengan wadah (packing)

3. Sesuai dengan defektor

4. Melarutkan sampel

5. Memiliki visikositas rendah

6. Bila diperlukan, memudahkan "sample recovery"

7. Diperdagangan dapat diperoleh dengan harga murah (reasonable price)

Umumnya, semua solven yang sudah digunakan langsung dibuang karena prosedur pemumiannya kembali sangat membosankan dan mahal biayanya. Dari semua persyaratan di atas, persyaratan 1) s/d 4) merupakan yang sangat penting.

Menghilangkan gas (gelembung udara) dari solven, terutama untuk KCKT yang menggunakan pompa bolak balik (reciprocating pump) sangat diperlukan terutama bila detektor tidak tahan kinerja sampai 100 psi. Udara yang terlarut yang tidak dikeluarkan akan menyebabkan gangguan yang besar di dalam detektor sehingga data yang diperoleh tidak dapat digunakan (the data may be useless). Menghilangkan gas (degassing) juga sangat baik bila menggunakan kolom yang sangat sensitifterhadap udara (contoh : kolom berikatan dengan NH2).

3.8. Keuntungan KCKT

KCKT dapat dipandang sebagai pelengkap Kromatografi Gas (KG). Dalam banyak hal kedua teknik ini dapat digunakan untuk memperoleh efek pemisahan yang sama membaiknya. Bila derivatisasi diperlukan pada KG, namun pada KCKT zat-zat yang tidak diderivatisasi dapat dianalisis. Untuk zat-zat yang labil pada pemanasan atau tidak menguap, KCKT adalah pilihan utama. Namun demikian bukan berarti KCKT menggantikan KG, tetapi akan memainkan peranan yang lebih besar bagi para analis laboratorium. Derivatisasi juga menjadi populer pada KCKT karena teknik ini dapat digunakan untuk menambah sensitivitas detektor UV Visibel yang umumnya digunakan.

KCKT menawarkan beberapa keuntungan dibanding dengan kromatografi cair klasik, antara lain:

Cepat: Waktu analisis umumnya kurang dari 1 jam. Banyak analisis yang dapat diselesaikari sekitar 15-30 menit. Untuk analisis yang tidak rumit (uncomplicated), waktu analisi kurang dari 5 menit bisa dicapai

Resolusi : Berbeda dengan KG, Kromatografi Cair mempunyai dua rasa dimana interaksi selektif dapat terjadi. Pada KG, gas yang mengalir sedikit berinteraksi dengan zat padat; pemisahan terutama dicapai hanya dengan rasa diam. Kemampuan zat padat berinteraksi secara selektif dengan rasa diam dan rasa gerak pada KCKT memberikan parameter tambahan untuk mencapai pemisahan yang diinginkan.

Sensitivitas detektor : Detektor absorbsi UV yang biasa digunakan dalam KCKT dapat mendeteksi kadar dalam jumlah nanogram (10-9 gram) dari bermacam- macam zat. Detektor-detektor Fluoresensi dan Elektrokimia dapat mendeteksi jumlah sampai picogram (10-12 gram). Detektor-detektor seperti Spektrofotometer Massa, Indeks Refraksi, Radiometri, dll dapat juga digunakan dalam KCKT

Kolom yang dapat digunakan kembali : Berbeda dengan kolom kromatografi klasik, kolom KCKT dapat digunakan kembali (reusable) . Banyak analisis yang bisa dilakukan dengan kolom yang sma sebelum dari jenis sampel yang diinjeksi, kebersihan dari solven dan jenis solven yang digunakan

Ideal untuk zat bermolekul besar dan berionik : zat – zat yang tidak bisa dianalisis dengan KG karena volatilitas rendah , biasanya diderivatisasi untuk menganalisis psesies ionik. KCKT dengan tipe eksklusi dan penukar ion ideal sekali untuk mengalissis zat – zat tersebut.

Mudah rekoveri sampel : Umumnya setektor yang digunakan dalam KCKT tidak menyebabkan destruktif (kerusakan) pada komponen sampel yang diperiksa, oleh karena itu komponen sampel tersebut dapat dengan mudah sikumpulkan setelah melewati detector. Solvennya dapat dihilangkan dengan menguapkan ksecuali untuk romatografi penukar ion memerlukan prosedur khusus.

3.9 Seleksi Tipe KCKT

Analisis (pengguna KCKT) sebelum mengoperasikan KCKT, harus membuat keputusan tipe yang mana yan gharus dipilih yang dapat memberikan informasi yang diinginkan.

Skema I : Seleksi tipe KCKT adalah suatu petunjuk umum untuk seleksi tipe KCKT. Informasi ini akan memudahkan para analis untuk memutuskan pemelihan tipe KCKT yang memberikan para analis untuk memutuskan pemilihan tipe KCKT yang memberikan kemungkinan terbaik pada pemisahaan yang diinginkan. Namun, sampel yang tidak dikenal (unknown) akan menyulitkan pemilihannya tipe KCKT.

Informasi seperti kelarutan, gugus fungsi yang ada, besarnya Berat Molekul dapat diperoleh dari pembuat informasi, pemberi sampel, atau data spektroskopik seperti nucleic magnetic resonance Spectrosphotometer, infra red spectrophotometer, ultra violet spectrumeter, dan mass Spectrophotometer. Semua data-data ini dapat digunakan sebagai petunjuk bagi analis memilih tipe HPLC yang tepat untuk digunakan.

Dengan berpedoman pada Hukum Dasar "like dissolves like" maka sangat mudah untuk memutuskan tipe KCKT yang akan dipilih. Dari Skema 1 : Seleksi tipe KCKT, dengan cepat kita dapat melihat bahwa Berat Molekul (BM) lebih besar dari 2000, maka kita dapat menggunakan kromatografi eksklusi. Fasa geraknya adalah air jika sampelnya larut dalam air; bila dapat larut dalam pelarut organik maka digunakan pelarut- pelarut organik sebagai rasa gerak. Fasa diamnya adalah Sephadex atau (Bondagel Seri E untuk rasa gerak air dan Styragel atau MicroPak TSK gel untuk rasa gerak organik. Bila BM lebih rendah dari 2000, pertama yang harus ditentukan adalah apakah sampel dapat larut dalam air. Bila sampel dapat larut dalam air, maka kromatografi partisi rasa terbalik atau kromatografi penukar ion dapat digunakan. Bila kelarutan dipengaruhi oleh penambahan asam atau basa atau bila pH larutan bervariasi lebih dari 2 (dua) satuan pH dari pH 7, maka kromatografi penukar ion adalah pilihan utama. Bila kelambatan tidak dipengaruhi oleh asam dan basa dan larutan sampel adalah netral, maka kromatografi partisi rasa terbalik adalah pilihan terbaik. Tipe Eksklusi menggunakan ukuran poros yang kecil dan rasa air dapat juga dicoba.

Bila sampel tidak larut dalam air, kromatografi partisi atau kromatografi padat cair dianjurkan untuk digunakan. Untuk pekerjaan rutin disarankan menggunakan kromatografi partisi fasa terikat normal karena kolom-kolom ini tidak begitu rumit dalam perawatannya setelah digunakan. Untuk sampel-sampel isomer kromatografi padat cair lebih baik digunakan. Bila sampel memiliki perbedaan ukuran partikel yang besar, kromatografi eksklusi sterik dengan fasa gerak organik dapat juga digunakan.

Pemisahan Campuran

Top of Form

A. PENGERTIAN CAMPURAN DAN KLASIFIKASINYA

Bottom of Form

Top of Form

Campuran adalah materi yang terdiri atas dua macam zat atau lebih dan masih memiliki sifat-sifat zat asalnya. Jika kita mencampur minyak dengan air, terlihat ada batas di antara kedua cairan tersebut. Jika kita mencampur dengan alkohol, batas antara keduanya tidak terlihat. Minyak dan air membentuk campuran heterogen.

Campuran heterogen adalah campuran yang tidak serbasama, membentuk dua fasa atau lebih, dan terdapat batas yang jelas di antara fasa-fasa tersebut. Alkohol dan air membentuk campuran homogen. Campuran homogen adalah campuran yang serbasama di seluruh bagiannya dan membentuk satu fasa.

Contoh campuran heterogen :
* campuran tepung beras dengan ir,
* campuran kapur dengan pasir,
* campuran serbuk besi dengan karbon.
Contoh campuran homogen :
* campuran gula atau garam dapur dengan air,
* air teh yang sudah disaring,
*campuran gas di udara.

Campuran homogen biasa disebut larutan.
Larutan adalah campuran homogen antara zat terlarut (solute) dan zat pelarut (solvent). Larutan dapat berwujud padat, cair, dan gas.

1. Larutan berwujud padat. Larutan berwujud padat biasa ditemukan pada paduan logam. contohnya, kuningan yang merupakan paduan seng dan tembaga.

2. Larutan berwujud cair. Contohnya, larutan gula dalam pelarut air.

3. Larutan dalam wujud gas. Contohnya, udara yang terdiri atas bermacam-macam gas, diantaranya adalah nitrogen, oksigen, dan karbon dioksida

Bottom of Form

B. METODE PEMISAHAN CAMPURAN

Top of Form

Metode pemisahan merupakan suatu cara yang digunakan untuk memisahkan atau memurnikan suatu senyawa atau skelompok senyawa yang mempunyai susunan kimia yang berkaitan dari suatu bahan, baik dalam skala laboratorium maupun skala industri. Metode pemisahan bertujuan untuk mendapatkan zat murni atau beberapa zat murni dari suatu campuran, sering disebut sebagai pemurnian dan juga untuk mengetahui keberadaan suatu zat dalam suatu sampel (analisis laboratorium).

Berdasarkan tahap proses pemisahan, metode pemisahan dapat dibedakan menjadi dua golongan, yaitu metode pemisahan sederhana dan metode pemisahan kompleks.

Metode Pemisahan Sederhana
Metode pemisahan sederhana adalah metode yang menggunakan cara satu tahap. Proses ini terbatas untuk memisahkan campuran atau larutan yang relatif sederhana.

Metode Pemisahan Kompleks
Metode pemisahan kompleks memerlukan beberapa tahapan kerja, diantaranya penambahan bahan tertentu,pengaturan proses mekanik alat, dan reaksi-reaksi kimia yang diperlukan. Metode ini biasanya menggabungkan dua atau lebih metode sederhana. Contohnya, pengolahan bijih dari pertambangan memerlukan proses pemisahan kompleks.

Keadaan zat yang diinginkan dan dalam keadaan campuran harus diperhatiakn untuk menghindari kesalahan pemilihan metode pemisahan yang akan menimbulkan kerusakan hasil atau melainkan tidak berhasil. Beberapa faktor yang perlu diperhatikan antara lain :

1. Keadaan zat yang diinginkan terhadap campuran, apakah zat ada di dalam sel makhluk hidup, apakah bahan terikat secara kimia, dan sebagainya.

2. Kadar zat yang diinginkan terhadap campurannya, apakah kadarnya kecil atau besar.

3. Sifat khusus dari zat yang diinginkan dan campurannya, misalnya zat tidak tahan panas, mudah menguap, kelarutan terhadap pelarut tertentu, titik didih, dan sebagainya.

4. Standar kemurnian yang diinginkan. Kemurnian 100% memerlukan tahap yang berbeda dengan 96%.

5. zat pencemar dan campurannya yang mengotori beserta sifatnya.

6. Nilai guna zat yang diinginkan, harga, dan biaya proses pemisahan.

Bottom of Form

C. DASAR-DASAR METODE PEMISAHAN

Top of Form

Suatu zat dapat dipisahkan dari campurannya karena mempunyai perbedaan sifat. Hal ini dinamakan dasr pemisahan. Beberapa dasar pemisahan campuran antara lain sebagai berikut :

1. Ukuran partikel
Bila ukuran partikel zat yang diinginkan berbeda dengan zat yang tidak diinginkan (zat pencmpur) dapat dipisahkan dengan metode filtrasi (penyaringan). jika partikel zat hasil lebih kecil daripada zat pencampurnya, maka dapat dipilih penyring atau media berpori yang sesuai dengan ukuran partikel zat yang diinginkan. Partikel zat hasil akan melewati penyaring dan zat pencampurnya akan terhalang.

2. Titik didih
Bila antara zat hasil dan zat pencampur memiliki titik didih yang jauh berbeda dapat dipishkan dengan metode destilasi. Apabila titik didih zat hasil lebih rendah daripada zat pencampur, maka bahan dipanaskan antara suhu didih zat hasil dan di bawah suhu didih zat pencampur. Zat hasil akan lebih cepat menguap, sedangkan zat pencampur tetap dalam keadaan cair dan sedikit menguap ketika titik didihnya terlewati. Proses pemisahan dengan dasar perbedaan titik didih ini bila dilakukan dengan kontrol suhu yang ketat akan dapat memisahkan suatu zat dari campuranya dengan baik, karena suhu selalu dikontrol untuk tidak melewati titik didih campuran.

3. Kelarutan
Suatu zat selalu memiliki spesifikasi kelarutan yang berbeda, artinya suatu zat selalu memiliki spesifikasi kelarutan yang berbeda, artinya suatu zat mungkin larut dalam pelarut A tetapi tidak larut dalam pelarut B, atau sebaliknya. Secara umum pelarut dibagi menjadi dua, yaitu pelarut polar, misalnya air, dan pelarut nonpolar (disebut juga pelarut organik) seperti alkohol, aseton, methanol, petrolium eter, kloroform, dan eter.
Dengan melihat kelarutan suatu zat yang berbeda dengan zat-zat lain dalam campurannya, maka kita dapat memisahkan zat yang diinginkan tersebut dengan menggunakan pelarut tertentu.

4. Pengendapan
Suatu zat akan memiliki kecepatan mengendap yang berbeda dalam suatu campuran atau larutan tertentu. Zat-zat dengan berat jenis yng lebih besar daripada pelarutnya akan segera mengendap. Jika dalam suatu campuran mengandung satu atau beberapa zat dengan kecepatan pengendapan yang berbeda dan kita hanya menginginkan salah satu zat, maka dapat dipisahkan dengan metode sedimentsi tau sentrifugsi. Namun jika dalm campuran mengandung lebih dari satu zat yang akan kita inginkan, maka digunakan metode presipitasi. Metode presipitasi biasanya dikombinasi dengan metode filtrasi.

5. Difusi
Dua macm zat berwujud cair atau gas bila dicampur dapat berdifusi (bergerak mengalir dan bercampur) satu sama lain. Gerak partikel dapat dipengaruhi oleh muatan listrik. Listrik yang diatur sedemikian rupa (baik besarnya tegangan maupun kuat arusnya) akan menarik partikel zat hasil ke arah tertentu sehingga diperoleh zat yang murni. Metode pemisahan zat dengan menggunakan bantuan arus listrik disebut elektrodialisis. Selain itu kita mengenal juga istilah elektroforesis, yaitu pemisahan zat berdasarkan banyaknya nukleotida (satuan penyusun DNA) dapat dilakukan dengan elektroforesis menggunakan suatu media agar yang disebut gel agarosa.

6. Adsorbsi
Adsorbsi merupakan penarikan suatu zat oleh bahan pengadsorbsi secara kuat sehingga menempel pada permukaan dari bahan pengadsorbsi. Penggunaan metode ini diterapkan pada pemurnian air dan kotoran renik atau organisme.

Bottom of Form

D. JENIS-JENIS METODE PEMISAHAN Top of Form

1. Filtrasi
Filtrasi atau penyaringan merupakan metode pemisahan untuk memisahkan zat padat dari cairannya dengan menggunakan alat berpori (penyaring). Dasar pemisahan metode ini adalah perbedaan ukuran partikel antara pelarut dan zat terlarutnya. Penyaring akan menahan zat padat yang mempunyai ukuran partikel lebih besar dari pori saringan dan meneruskan pelarut.
Proses filtrasi yang dilakukan adalah bahan harus dibuat dalam bentuk larutan atau berwujud cair kemudian disaring. Hasil penyaringan disebut filtrat sedangkan sisa yang tertinggal dipenyaring disebut residu. (ampas).
Metode ini dimanfaatkan untuk membersihkan air dari sampah pada pengolahan air, menjernihkan preparat kimia di laboratorium, menghilangkan pirogen (pengotor) pada air suntik injeksi dan obat-obat injeksi, dan membersihkan sirup dari kotoran yang ada pada gula. Penyaringan di laboratorium dapat menggunakan kertas saring dan penyaring buchner. Penyaring buchner adalah penyaring yang terbuat dari bahan kaca yang kuat dilengkapi dengan alat penghisap.

2. Sublimasi
Sublimasi merupakan metode pemisahan campuran dengan menguapkan zat padat tanpa melalui fasa cair terlebih dahulu sehingga kotoran yang tidak menyublim akan tertinggal. bahan-bahan yang menggunakan metode ini adalah bahan yang mudah menyublim, seperti kamfer dan iod.

3. Kristalisasi
Kristalisasi merupakan metode pemisahan untuk memperoleh zat padat yang terlarut dalam suatu larutan. Dasar metode ini adalah kelarutan bahan dalam suatu pelarut dan perbedaan titik beku. Kristalisasi ada dua cara yaitu kristalisasi penguapan dan kristalisasi pendinginan.
Contoh proses kristalisasi dalam kehidupan sehari-hari adalah pembuatan garam dapur dari air laut. Mula-mula air laut ditampung dalam suatu tambak, kemudian dengan bantuan sinar matahari dibiarkan menguap. Setelah proses penguapan, dihasilkan garam dalam bentuk kasar dan masih bercampur dengan pengotornya, sehingga untuk mendapatkan garam yang bersih diperlukan proses rekristalisasi (pengkristalan kembali)
Contoh lain adalah pembuatan gula putih dari tebu. Batang tebu dihancurkan dan diperas untuk diambil sarinya, kemudian diuapkan dengan penguap hampa udara sehingga air tebu tersebut menjadi kental, lewat jenuh, dan terjadi pengkristalan gula. Kristal ini kemudian dikeringkan sehingga diperoleh gula putih atau gula pasir.

4. Destilasi
Destilasi merupakan metode pemisahan untuk memperoleh suatu bahan yang berwujud cair yang terkotori oleh zat padat atau bahan lain yang mempunyai titik didih yang berbeda. Dasar pemisahan adalah titik didih yang berbeda. Bahan yang dipisahkan dengan metode ini adalah bentuk larutan atau cair, tahan terhadap pemanasan, dan perbedaan titik didihnya tidak terlalu dekat.
Proses pemisahan yang dilakukan adalah bahan campuran dipanaskan pada suhu diantara titik didih bahan yang diinginkan. Pelarut bahan yang diinginkan akan menguap, uap dilewatkan pada tabung pengembun (kondensor). Uap yang mencair ditampung dalam wadah. Bahan hasil pada proses ini disebut destilat, sedangkan sisanya disebut residu.
Contoh destilasi adalah proses penyulingan minyak bumi, pembuatan minyak kayu putih, dan memurnikan air minum.

5. Ekstraksi
Ekstraksi merupakan metode pemisahan dengan melarutkan bahan campuran dalam pelarut yang sesuai. Dasar metode pemisahan ini adalah kelarutan bahan dalam pelarut tertentu.

6. Adsorbsi
Adsorbsi merupakan metode pemisahan untuk membersihkan suatu bahan dari pengotornya dengan cara penarikan bahan pengadsorbsi secara kuat sehingga menempel pada permukaan bahan pengadsorbsi. Penggunaan metode ini dipakai untuk memurnikan air dari kotoran renik atau mikroorganisme, memutihkan gula yang berwarna coklat karena terdapat kotoran.

7. Kromatografi
Kromatografi adalah cara pemisahan berdasarkan perbedaan kecepatan perambatan pelarut pada suatu lapisan zat tertentu. Dasar pemisahan metode ini adalah kelarutan dalam pelarut tertentu, daya absorbsi oleh bahan penyerap, dan volatilitas (daya penguapan). Contoh proses kromatografi sederhana adalah kromatografi kertas untuk memisahkan tinta.

Bottom of Form

E. PEMANFAATAN METODE PEMISAHAN

Pada proses pemisahan suatu campuran ada yang memerlukan metode pemisahan, ada pula yang dikombinasi lebih dari saru jenis metode. Berikut ini beberapa contoh pemanfaatan metode pemisahan dengan menggunakan metode pemisahan tertentu.
Pemurnian Garam Dapur
Air laut banyak mengandung mineral terutama garam dapur (NaCl). Petani garam dapur memisahkan garam dapur dengan menjemur air laut pada sebuah bangunan yang datar dan lapang. Garam yang diperoleh, kemudian diolah di industri untuk dicuci dan ditambah iodium.
Pemurnian Air Minum
Air adalah sumber kehidupan. Air selalu diperlukan dalam setiap bidang kehidupan kita.bagi penduduk Indonesia, tidak sulit untuk mendapatkan air tawar, namun di daerah timur tengah sulit untuk mendapatkan air tawar. Mereka melakukan penyulingan (destilasi) untuk memperoleh air tawar secara besar-besaran.